翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Drucker Prager : ウィキペディア英語版
Drucker–Prager yield criterion

The Drucker–Prager yield criterion〔Drucker, D. C. and Prager, W. (1952). ''Soil mechanics and plastic analysis for limit design''. Quarterly of Applied Mathematics, vol. 10, no. 2, pp. 157–165.〕 is a pressure-dependent model for determining whether a material has failed or undergone plastic yielding. The criterion was introduced to deal with the plastic deformation of soils. It and its many variants have been applied to rock, concrete, polymers, foams, and other pressure-dependent materials.
The DruckerPrager yield criterion has the form
:
\sqrt = A + B~I_1

where I_1 is the first invariant of the Cauchy stress and J_2 is the second invariant of the deviatoric part of the Cauchy stress. The constants A, B are determined from experiments.
In terms of the equivalent stress (or von Mises stress) and the hydrostatic (or mean) stress, the Drucker–Prager criterion can be expressed as
:
\sigma_e = a + b~\sigma_m

where \sigma_e is the equivalent stress, \sigma_m is the hydrostatic stress, and
a,b are material constants. The Drucker–Prager yield criterion expressed in Haigh–Westergaard coordinates is
:
\tfrac~B\xi = A

The Drucker–Prager yield surface is a smooth version of the Mohr–Coulomb yield surface.
== Expressions for A and B ==
The Drucker–Prager model can be written in terms of the principal stresses as
:
\sqrt\left()} = A + B~(\sigma_1+\sigma_2+\sigma_3) ~.

If \sigma_t is the yield stress in uniaxial tension, the Drucker–Prager criterion implies
:
\cfrac\right) ~;~~ B = \cfrac\right) ~.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Drucker–Prager yield criterion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.